26 research outputs found

    Long-Stroke Nanopositioning Stage Driven by Piezoelectric Motor

    Get PDF

    MGRO Recognition Algorithm-Based Artificial Potential Field for Mobile Robot Navigation

    Get PDF
    This paper describes a novel recognition algorithm which includes mean filter, Gaussian filter, Retinex enhancement method, and Ostu threshold segmentation method (MGRO) for the navigation of mobile robots with visual sensors. The approach includes obstacle visual recognition and navigation path planning. In the first part, a three-stage method for obstacle visual recognition is constructed. Stage 1 combines mean filtering and Gaussian filtering to remove random noise and Gauss noise in the environmental image. Stage 2 increases image contrast by using the Retinex enhancement method. Stage 3 uses the Ostu threshold segmentation method to achieve obstacle feature extraction. A navigation method based on the auxiliary visual information is constructed in the second part. The method is based on the artificial potential field (APF) method and is able to avoid falling into local minimum by changing the repulsion field function. Experimental results confirm that obstacle features can be extracted accurately and the mobile robot can avoid obstacles safely and arrive at target positions correctly

    Piezoresistivity Characterization of Synthetic Silicon Nanowires Using a MEMS Device

    Full text link

    The Development of Piezo-Driven Tools for Cellular Piercing

    No full text
    Conventionally, intracytoplasmic sperm injection (ICSI) in the mouse is conducted with piezo-drills that use a droplet of mercury for damping. The use of mercury causes concerns of toxicity and contamination. Although Fluorinert can be used as a substitute for mercury to reduce piezo-drill’s lateral vibration, the damping effect is not as satisfactory as mercury. In this work, a modified piezo-drill without using mercury was developed for the cellular piercing of mouse oocytes. Experimentally, appropriate parameters of driving voltage and frequency were obtained for the penetration of the zona pellucida of mouse oocytes. Furthermore, the lateral vibration of the injection pipette is lower than 1 μm in deionized water, which is not observable at 400 magnificence. With the piezo-drill without using mercury, the system performs the cellular piercing of mouse oocytes with a maximum cleavage rate of 94.7% (n = 117)

    Dynamics of high quality factor force microscope microcantilevers operated in contact mode

    No full text
    In AFM system with contact mode operation, the surface structure is determined by measuring the variation of the microcantilever tip deflection as the tip scans across the sample. Therefore, the dynamic characteristics of the microcantilever, including the stability, rapidity and accuracy performances, are extremely important parameters in determining the performance of AFM. In this paper, we obtain the analytical expressions of the deflection, overshoot, and adjustment time of the cantilever by using the Laplace transform theorem. The influence of the intrinsic parameters on the system dynamics is discussed in detail, which provides theoretical guidance for selecting samples in the experiments. Moreover, we propose a new control method based on the velocity feedback control in order to enhance the dynamic features of the system. The results indicate that the new control method can effectively improve the dynamic characteristics of the microcantilever

    A Modified Duhem Model for Rate-Dependent Hysteresis Behaviors

    No full text

    The Development of Piezo-Driven Tools for Cellular Piercing

    No full text
    Conventionally, intracytoplasmic sperm injection (ICSI) in the mouse is conducted with piezo-drills that use a droplet of mercury for damping. The use of mercury causes concerns of toxicity and contamination. Although Fluorinert can be used as a substitute for mercury to reduce piezo-drill’s lateral vibration, the damping effect is not as satisfactory as mercury. In this work, a modified piezo-drill without using mercury was developed for the cellular piercing of mouse oocytes. Experimentally, appropriate parameters of driving voltage and frequency were obtained for the penetration of the zona pellucida of mouse oocytes. Furthermore, the lateral vibration of the injection pipette is lower than 1 μm in deionized water, which is not observable at 400 magnificence. With the piezo-drill without using mercury, the system performs the cellular piercing of mouse oocytes with a maximum cleavage rate of 94.7% (n = 117)

    Frequency-domain analysis method for analyzing and improving the steady-state characteristics of microcantilever in tapping-mode atomic force microscopy

    No full text
    In tapping-mode AFM, the steady-state characteristics of microcantilever are extremely important to determine the AFM performance. Due to the external excitation signal and the tip-sample interactions, the solving process of microcantilever motion equation will become very complicated with the traditional time-domain analysis method. In this paper, we propose the novel frequency-domain analysis method to analyze and improve the steady-state characteristics of microcantilever. Compared with the previous methods, this new method has three prominent advantages. Firstly, the analytical expressions of amplitude and phase of cantilever system can be derived conveniently. Secondly, the stability of the cantilever system can be accurately determined and the stability margin can be obtained quantitatively in terms of the phase margin and the magnitude margin. Thirdly, on this basis, external control mechanism can be devised quickly and easily to guarantee the high stability of the cantilever system. With this novel method, we derive the frequency response curves and discuss the great influence of the intrinsic parameters on the system stability, which provides theoretical guidance for selecting samples to achieve better AFM images in the experiments. Moreover, we introduce a new external series correction method to significantly increase the stability margin. The results indicate that the cantilever system is no longer easily disturbed by external interference signals
    corecore